首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1256篇
  免费   481篇
  国内免费   729篇
化学   2255篇
晶体学   76篇
综合类   18篇
物理学   117篇
  2024年   6篇
  2023年   62篇
  2022年   100篇
  2021年   137篇
  2020年   258篇
  2019年   135篇
  2018年   127篇
  2017年   113篇
  2016年   194篇
  2015年   166篇
  2014年   128篇
  2013年   188篇
  2012年   145篇
  2011年   112篇
  2010年   79篇
  2009年   62篇
  2008年   69篇
  2007年   63篇
  2006年   66篇
  2005年   75篇
  2004年   36篇
  2003年   48篇
  2002年   26篇
  2001年   23篇
  2000年   10篇
  1999年   17篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有2466条查询结果,搜索用时 15 毫秒
151.
采用简单的沉积方法制备了不同碘化氧铋含量的BiOI/Bi2WO6光催化剂,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、紫外-可见漫反射光谱(UV-Vis DRS)和BET比表面积测量对其进行了表征。在紫外和可见光的照射下,使用甲基橙和苯酚的光催化降解评价了BiOI/Bi2WO6催化剂的光催化性能。结果表明:与商业P25和纯Bi2WO6相比,13.2%BiOI/Bi2WO6光催化剂具有更高的紫外和可见光催化性能。这明显增加的光催化活性主要归功于光生电子和空穴在Bi2WO6和BiOI界面上的有效转移,降低了电子-空穴对的复合。基于BiOI和Bi2WO6的能带结构,提出了光生载流子的一种转移过程。自由基清除剂的实验表明,·OH,h+,·O2-和H2O2,特别是h+,共同支配了甲基橙和苯酚的光催化降解过程。  相似文献   
152.
TiO2 decorated with partially crystallized Pd nanoparticles (Pd/TiO2-P) was successfully prepared by atmospheric-pressure dielectric barrier discharge cold plasma. The XRD and XPS analyses proved that Pd ions were reduced to partially crystallized metallic Pd nanoparticles in Pd/TiO2-P. The XPS spectra also indicated that an enhanced metal-support interaction was formed due to the existence of partially crystallized Pd nanoparticles with lower coordination number in Pd/TiO2-P. Photocatalytic activity of Pd/TiO2-P was much higher than that of TiO2 samples decorated with well crystallized Pd nanoparticles.  相似文献   
153.
以Bi(NO3)3·5H2O、Na OH、Ti(OC4H9)4为原料,采用水热法制备Bi0.5Na0.5Ti O3纳米光催化剂。用XRD、TEM表征了Bi0.5Na0.5Ti O3光催化剂的结构和形貌。以亚甲基蓝为模型污染物,考察了不同浓度的Na OH对Bi0.5Na0.5Ti O3晶体在紫外光和可见光照射下光催化活性的影响。通过荧光技术研究了Bi0.5Na0.5Ti O3光催化剂表面羟基自由基的生成,探究了清除剂对光催化降解污染物活性的影响。结果表明:Na OH的浓度对Bi0.5Na0.5Ti O3光催化剂的紫外光和可见光活性有很大的影响,当Na OH浓度为8mol·L-1时制备的Bi0.5Na0.5Ti O3晶体光催化活性最高,光照1h,亚甲基蓝的紫外及可见光催化降解率分别达到69.8%、53.4%,在光催化降解过程中·O2ˉ和·OH起主要作用,尤其是·O2-起了重要作用。  相似文献   
154.
TiO2-mediated photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including photoelectrochemical conversion, self-cleaning surfaces, and especially water purification systems. The dimensionality of the structure of a TiO2 material can affect its properties, functions, and more specifically, its photocatalytic performance. In this work, the photocatalytic inactivation of Gram-negative Escherichia coli using three photocatalysts, differing in their structure and other characteristics, was studied in a batch reactor under UVA light. The aim was to establish the disinfection efficiency of solid TiO2 compared with that of suspended catalysts, widely considered as reference cases for photocatalytic water disinfection. The bacterial inactivation profiles obtained showed that: (1) the photoinactivation was exclusively related to the quantity of photons retained per unit of treated volume, irrespective of the characteristics of the photocatalyst and the emitted light flux densities; (2) across the whole UV light range studied, each of the photocatalytic solids was able to achieve more than 2 log bacterial inactivation with less than 2 h UV irradiation; (3) none of the used catalysts achieved a total bacterial disinfection during the treatment time. For each of the catalysts the quantum yield has been assessed in terms of disinfection efficiency, the 2D material showed almost the same performance as those of suspended catalysts. This catalyst is promising for supported photocatalysis applications.  相似文献   
155.
Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.  相似文献   
156.
Molecular design to improve catalyst performance is significant but challenging. In enzymes, residue groups that are close to reaction centers play critical roles in regulating activities. Using this bioinspired strategy, three water-soluble polymers were designed with appending Co porphyrins and different side-chain groups to mimic enzyme reaction centers and activity-controlling residue groups, respectively. With these polymers, high hydrogen evolution efficiency was achieved in neutral aqueous media for electro- (turnover frequency >2.3×104 s−1) and photocatalysis (turnover number >2.7×104). Porphyrin units are surrounded and protected by polymer chains, and more importantly, the activity can be tuned with different side-chain groups. Therefore, instead of revising molecular structures that is difficult from both design and synthesis points of view, polymers can be used to improve molecular solubility and stability and simultaneously regulate activity by using side-chain groups.  相似文献   
157.
Developing strong visible-light-absorbing (SVLA) earth-abundant photosensitizers (PSs) for significantly improving the utilization of solar energy is highly desirable, yet it remains a great challenge. Herein, we adopt a through-bond energy transfer (TBET) strategy by bridging boron dipyrromethene (Bodipy) and a CuI complex with an electronically conjugated bridge, resulting in the first SVLA CuI PSs ( Cu-2 and Cu-3 ). Cu-3 has an extremely high molar extinction coefficient of 162 260 m −1 cm−1 at 518 nm, over 62 times higher than that of traditional CuI PS ( Cu-1 ). The photooxidation activity of Cu-3 is much greater than that of Cu-1 and noble-metal PSs (Ru(bpy)32+ and Ir(ppy)3+) for both energy- and electron-transfer reactions. Femto- and nanosecond transient absorption and theoretical investigations demonstrate that a “ping-pong” energy-transfer process in Cu-3 involving a forward singlet TBET from Bodipy to the CuI complex and a backward triplet-triplet energy transfer greatly contribute to the long-lived and Bodipy-localized triplet excited state.  相似文献   
158.
Silicon-containing compounds are widely used as synthetic building blocks, functional materials, and bioactive reagents. In particular, silyl radicals are important intermediates for the synthesis and transformation of organosilicon compounds. Herein, we describe the first protocol for the generation of silyl radicals by photoinduced decarboxylation of silacarboxylic acids, which can be easily prepared in high yield on a gram scale and are very stable to air and moisture. Irradiation of silacarboxylic acids with blue LEDs (455 nm) in the presence of a commercially available photocatalyst releases silyl radicals, which can further react with various alkenes to give the corresponding silylated products in good-to-high yields with broad functional-group compatibility. This reaction proceeds in the presence of water, enabling efficient deuterosilylation of alkenes with D2O as the deuterium source. Germyl radicals were similarly obtained.  相似文献   
159.
Utilizing sustainable energy for chemical activation of small molecules, such as CO2, to produce important chemical feedstocks is highly desirable. The simultaneous production of CO/H2 mixture (syngas) from photoreduction of CO2 and H2O is highly promising. However, the relationships between structure, composition, crystallinity, and photocatalytic performance are still indistinct. Here, amorphous ultrathin CoO nanowires and polyoxometalate incorporated nanowires with even lower crystallinity were synthesized. The POM-incorporated ultrathin nanowires exhibit high photocatalytic syngas production activity, reaching H2 and CO evolution rates of 11555 and 4165 μmol g−1 h−1 respectively. Further experiments indicate that the ultrathin morphology and incorporation of POM both contribute to the superior performance. Multiple characterizations reveal the enhanced charge–hole separation efficiency of the catalyst would facilitate the photocatalysis.  相似文献   
160.
This Communication describes the use of CuInS2/ZnS quantum dots (QDs) as photocatalysts for the reductive deprotection of aryl sulfonyl-protected phenols. For a series of aryl sulfonates with electron-withdrawing substituents, the rate of deprotection for the corresponding phenyl aryl sulfonates increases with decreasing electrochemical potential for the two electron transfers within the catalytic cycle. The rate of deprotection for a substrate that contains a carboxylic acid, a known QD-binding group, is accelerated by more than a factor of ten from that expected from the electrochemical potential for the transformation, a result that suggests that formation of metastable electron donor–acceptor complexes provides a significant kinetic advantage. This deprotection method does not perturb the common NHBoc or toluenesulfonyl protecting groups and, as demonstrated with an estrone substrate, does not perturb proximate ketones, which are generally vulnerable to many chemical reduction methods used for this class of reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号